Stochastic Competition between Mechanistically Independent Slippage and Death Pathways Determines Cell Fate during Mitotic Arrest

نویسندگان

  • Hsiao-Chun Huang
  • Timothy J. Mitchison
  • Jue Shi
چکیده

Variability in cell-to-cell behavior within clonal populations can be attributed to the inherent stochasticity of biochemical reactions. Most single-cell studies have examined variation in behavior due to randomness in gene transcription. Here we investigate the mechanism of cell fate choice and the origin of cell-to-cell variation during mitotic arrest, when transcription is silenced. Prolonged mitotic arrest is commonly observed in cells treated with anti-mitotic drugs. Cell fate during mitotic arrest is determined by two alternative pathways, one promoting cell death, the other promoting cyclin B1 degradation, which leads to mitotic slippage and survival. It has been unclear whether these pathways are mechanistically coupled or independent. In this study we experimentally uncoupled these two pathways using zVAD-fmk to block cell death or Cdc20 knockdown to block slippage. We then used time-lapse imaging to score the kinetics of single cells adopting the remaining fate. We also used kinetic simulation to test whether the behaviors of death versus slippage in cell populations where both pathways are active can be quantitatively recapitulated by a model that assumes stochastic competition between the pathways. Our data are well fit by a model where the two pathways are mechanistically independent, and cell fate is determined by a stochastic kinetic competition between them that results in cell-to-cell variation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons.

Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic ...

متن کامل

Cell fate determination in cisplatin resistance and chemosensitization

Understanding the determination of cell fate choices after cancer treatment will shed new light on cancer resistance. In this study, we quantitatively analyzed the individual cell fate choice in resistant UM-SCC-38 head and neck cancer cells exposed to cisplatin. Our study revealed a highly heterogeneous pattern of cell fate choices in UM-SCC-38 cells, in comparison to that of the control, non-...

متن کامل

Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate.

Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest i...

متن کامل

Mcl-1 stability determines mitotic cell fate of human multiple myeloma tumor cells treated with the kinesin spindle protein inhibitor ARRY-520.

Kinesin spindle protein (KSP/Eg5) inhibitors are novel anticancer agents that have thus far shown only modest activity in the clinic. Understanding how to identify patients who may be most sensitive to treatment is clearly needed to improve the development of these molecules. We studied four multiple myeloma cell lines treated with the KSP inhibitor ARRY-520 to identify factors important for in...

متن کامل

Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy.

Attacking cancer cell survival defense by targeting B-Cell Lymphoma 2 (BCL2) family of anti-apoptotic proteins may provide a powerful means to improve chemotherapy efficiency. This could be particularly relevant to anti-mitotic-based therapy, where tumor response relates to a competing network between mitotic cell death signaling and mitotic slippage as an adaptative response to a leaky mitotic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010